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Abstract

This paper describes a series of numerical simulations of field

reversal in the Reversed Field Pinch, using an incompressible MHD model

and a reference set of plasma conditions. Field reversal and maintenance

are observed, although at values of the pinch parameter e larger than in

experiment. This discrepancy is shown to arise largely from the

unrealistic resistivity profile in the reference conditions and may not be

fundamental. Qualitative agreement with experiment is demonstrated in

several areas. The view that field reversal is due to a simple MHD dynamo

is therefore given support.
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Introduction

This paper describes the results from a series of numerical

simulations of field reversal in the Reversed Field Pinch (RFP), using a

cylindrical incompressible magnetohydrodynamic (ZHD) model. The

calculations presented here, the first in a program of numerical pinch

modelling, apply specifically to the plasma conditions chosen in [1] as a

basis for numerical comparison work.

The purpose of the paper is to record typical simulation results for

simple macroscopic quantities of experimental interest and thus help

assess to what degree single-fluid theory can explain the remarkable

phenomenon of field reversal. These calculations extend those at present

in the literature by providing a sequence of results rather than single

instances of reversal.

The main feature of the present MHD model is the assumption of

incompressibility. This was adopted as a physics choice as a particularly

simple model with which to explore the hypothesis that field reversal is a

gross electromechanical effect, not essentially altered by

compressibility, transport etc.

The assumption of incompressibility also simplifies the numerical

problem since magnetosonic waves and their severe timestep restrictions

are absent from the system.



It should be noted that the plasma conditions taken from [1), notably

the low value of Lundquist number S and the flat resistivity profile,

are somewhat different from experiment. Furthermore, numerical simulation

results are found to be fairly sensitive to the choice of resistivity

profile. The results of this paper should therefore be clearly understood

as applying to the numerical reference simulation proposed in (1], rather

than an attempt to model precise experimental conditions.

With experiments in mind, the most obvious feature of the present

results is the rather large value of pinch parameter e required for

reversal (0 2.3). The result in (4] and preliminary results with the

present code indicate that (even with an incompressible MHD model) at

larger values of S and with a resistivity profile increasing towards the

edge (nearer real conditions), the value of e required for reversal

drops to 1.4 - 1.6, much more consistent with experiment.

Background

Simulations of field reversal are not new and various simulation

codes have been used during the development of the subject.

The first 3-dimensional numerical simulation of the pinch was that of

Sykes and Wesson [2], using a compressible NHD model with anisotropic

resistivity in cartesian geometry. This demonstrated field reversal and

sustainment arising from gross MHD activity, but did not identify the

precise dynamical processes responsible.
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Park and Chu [33 used a 2-dimensional incompressible model with

anomalous resistivity. Field reversal was obtained and a successful

comparison made with the field profile in the eta-beta experiment.

Aydemir and Barnes [43 used a 3-dimensional incompressible MbW model

with a resistivity profile increasing sharply at the plasma edge and

obtained a steady reversed state with 8 = 1.5, F - -0.03 at S - 5.10 3.

Sato 15] has proposed a driven reconnection model of field reversal

and has performed calculations with a compressible MHO model.

In [1], a comparison of field reversal calculations was undertaken

using compressible and incompressible 3D MHD codes. This clearly

demonstrated a difference between the compressible and incompressible

results. For the single specific case run, the compressible codes gave

field reversal whereas the incompressible codes did not. The macroscopic

reason [1] for this difference appears to be a significant contribution of

Sr z to the (v x .B) term driving the J current responsible for

field reversal. (Here the bar denotes the axisymmetric part.) This

contribution is identically zero in an incompressible fluid since ;rV 0.

However, the contribution must also vanish at the reversal point (5z 0)

and therefore cannot be solely responsible for reversal, irrespective of

the plasma model. The significance of this contribution and hence the

degree of applicability of an incompressible MHD model awaits a more

detailed comparison with experiment and a more detailed study of the

results from compressible codes. There is no question, however, that

field reversal can be obtained with an incompressible MHD model.
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Numerical model

The numerical model [6] is that of single fluid incompressible MHD in

a periodic cylinder. In dimensionless form the equations may be written

av
+ v. yv - -Vp + j x B + v V

2 v
et

- - V X(Yx - j
at S

V.v - 0

11 - 7)(r)

v - const.

Here, times are normalized to the Alfvdn time based on the (minor) radius

of the cylinder. S is the ratio of resistive diffusion time to Alfvdn

time and n is the resistivity profile. For the present case S - 103

and 71 - I [I). The length of the cylinder is 2n (unit aspect ratio).

Inclusion of the viscosity term is necessary to ensure non-linear

numerical stability of the code. For the present case, it is sufficient

to take v - 10-4 .

These equations are advanced in time using an explicit 2-step scheme

with an implicit treatment of resistivity. A spectral method is used in

the e and z directions and conventional second order finite
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differences in radius. Incompressibility is enforced by use of the

standard MAC method. A detailed description of the code is available.

The boundary conditions are those pertaining to an impermeable.

perfectly conducting, free-slip wall with a constant uniform driving

electric field, i.e. vr 01 oBa 0. W6  0, wi 2v ./r, E 0,

E = -const. (Here w x v.)

The initial magnetic field is taken to be the force-free equilibrium

with safety factor profile q given by [1]

q(r) - 0.4 (1.0 - 1.8748 r2 + 0.83232 r4 ).

(The field profiles are then obtained numerically.) This means that the

initial conditions have a reversed B . It must be Stressed that the
z

simulations of field reversal described here are not a consequence of the

choice of a reversed initial state. Field reversal is certainly

obtainable starting from the more realistic case B z const., which indeed

is the initial condition normally used in the code. The initial velocity

field is zero everywhere.

The equilibrium magnetic field is seeded with white noise at a

relative level of 10-6 and the code run with E0 () 0 (constant

'toroidal' flux) and E - conat. for a substantial fraction of a field
z

diffusion time. The value of E is chosen to give an appropriate value
z

of the pinch parameter e in the final state (and may therefore be

different from that implied by the initial q profile).



The results described here were obtained using a modest computational

mesh of N r 32, N e- 12, NZ - 25. This means that poloidal mode numbers

0 4 m 4 3 and toroidal mode numbers -8 4 n 4 8 are included in the

calculations.

Results

Fig. 1 shows a typical plot of the pinch parameter 6 and field

reversal fraction F as a function of time. As the simulation proceeds

the field rapidly loses the reversal of the initial state, but then

suddenly reverses and remains marginally reversed for the remainder of the

simulation, although with slight fluctuations. This remarkable behaviour

is emphasized by the dashed lines showing how F and e would evolve

(under axisymmetric resistive diffusion) if there were no dynamo effect.

Fig. 2 shows F versus 8 for the present plasma model (labelled

S _ 10 =T flat). It is obtained from a sequence of separate simulations

(each like Fig. 1) with different values of the applied electric field

E . Here and below we use the convention that each point on the graph is

the time-averaged value in the respective quasi steady-state. The error

bars then indicate the maximum deviation over time from this average. The

diagram clearly demonstrates that field reversal can be obtained with an

incompressible 14HD model. However, for the present case, the value of

pinch parameter e required for reversal (6 2.3) is larger than that

observed in experiment (0 a 1.4). This result and its known dependence on

the choice of plasma conditions have been discussed above.



To illustrate this point, Fig. 2 also shows results obtained from a

more realistic plasma model (labelled S _ 104 ij - shaped). This has a

resistivity profile increasing towards the edge (the most significant

change) and a larger S value. For this case, the F - 0 curve lies

considerably to the left of that for the present case of flat resistivity

and is much more consistent with experiment. It is also consistent with

the result in (4].

Fig. 3 shows the corresponding r.m.s. values of the relative

fluctuation level 6B3 /B 6at the wall plotted against the driving

electric field Ez . (Here 6B. = 5 - i(,)The typical fluctuation

level of - 10%. rather larger than the experimental value of = 1%, is also

likely to be dependent on the choice of plasma conditions. Nevertheless,

it is significant that the fluctuation level is not 100%, as might be

expected from simplistic quasi-linear MHD scaling arguments. Whether NHD

models always predict a relatively large level of fluctuation and thus

whether a more complicated description is needed in this respect [7] can

be decided only by further simulation work.

Fig. 4 shows the resistance per unit length (E z/I) as a function of

E z Shown for reference is the corresponding resistance obtained if the

plasma acted as a solid conductor of the same resistivity. The clear

non-linear relationship between the current and the applied voltage

constitutes a numerical simulation of what is known experimentally as

current 'screw-up'.

Fig. 5 shows simulation results for the p profile (the ratio
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j /B) as a function of radius and makes a heuristic comparison with

experimental values from the HBTX 1A experiment [8]. The simulation curve

corresponds to the case of greatest reversal in Fig. 2 (S = 103, = flat,

6 = 2.9, F = -0.21) and was calculated at the end of the run (time

t = 320). It has a value of F nearest that of the experimental case.

The experimental curve was obtained for S > 104, 6 = 1.7, F = -0.3,

aspect ratio = 3 and is the only direct measurement of i available from

HBTX 1A. Although the differences in the cases preclude a true

comparison, there is an encouraging consistency between the simulation and

experimental results.

Fig. 6 shows the radial profile of the axisymmetric part of j e at

the end of the calculation for the case 6 = 2.3, F = 0. Of fundamental

physics interest is the macroscopic cause of this current, responsible for

the decreasing Bz profile (through j = - 8z/or). To address this

point, the axisymmetric parts of Ohm's law

- - eSje - Ee9 +  < (v x B

are also displayed on the diagram. It is clear that <v zB r> is the

principal driving term for the field reversal, <vrBz > is a minor

contribution and E 0. The importance of <v zB r> has also been

suggested by Sato [5].

Fig. 7 shows a log,0 plot of the energy spectrum (the energy in each

Fourier harmonic) of B as a function of time for the case 8 u 2.3,
r

F = 0. (For reference, the corresponding logl0 energy spectrum value of
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Sis typically +0.1.) it shows the dominance of the two modes m - 1,

n =-2 and m - 1, n = -3 throughout the simulation. (For simplicity of

representation, only these modes have been labelled on the figure.) In

general, the dominant modes are found to be resonant inside the reversed

surface. The importance of m = 1 modes is consistent with experiment

[9].

Fig. 8 shows the energy spectrum at the end of the same calculation

(time t -500) as a histogram in (m,n) space. It provides a simple

picture of the amplitude of the various modes, in particular the

non-linear rn/n sequence 1/-21 1/-3, 2/-5, 3/-8.

Concluding Remarks

3-dimensional numerical simulations of field reversal in the Reversed

Field Pinch have been performed using (as a physics choice) the simplest

incompressible MkiD model and a reference set of plasma conditions [1].

Field reversal and maintenance are clearly observed. The F -Bcurve

has been presented.

There is considerable qualitative agreement between the numerical

results (F - 6 curve, fluctuation levels, fluctuation spectrum, current

screw-up and p profile) and experimental observations.

For the present case, the numerical values of the pinch parameter B

and fluctuation levels are rather larger than in experiment. However,

this quantitative discrepancy is known to arise largely from the choice of
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somewhat unrealistic plasma conditions, and may simply reflect the need

for correspondingly increased MHD activity.

Taken together, these results lend weight to the view that field

reversal is a phenomenon arising principally from single fluid 141D dynamo

action.

In common with all previous work, the present simulations are

essentially a series of macroscopic numerical experiments and do not

attempt to identify the detailed nature of the modes responsible for the

dynamo. Calculations are in hand to explore this question, to establish

the results for more realistic S values, aspect ratios and resistivity

profiles, and to make further comparisons with experiment.

Acknowledgement

It is a pleasure to acknowledge discussions with M.K. Bevir and

C.G.Gimblett.



References

1. A.Y. Aydemir, D.C. Barnes, E.J. Caramana, A.A. Mirin, R.A. Nebel,

D.D. Schnack, A.G. Sgro, Phys. Fluids 28 898 (1985).

2. A. Sykes, J.A. Wesson, Proc. 8th European Conference on Controlled

Fusion and Plasma Physics, Prague Vol 1. p.80, (1977).

3. W. Park, C.K. Chu, Nuclear Fusion 17 1100 (1977).

4. A.Y. Aydemir, D.C. Barnes, Phys. Rev. Lett. 52 930 (1984).

5. T. Sato, K. Kusano, 10th International Conf. on Plasma Physics and

Controlled Nuclear Fusion Research, London 1984, paper D-II-4-1.

6. P. Kirby, Proc. 11th International Conference on Numerical Simulation

of Plasmas, Montreal, 1985, paper 2.B.08; Proc. 8th European

Conference on Computational Physics, Eibsee, p.23, 1986.

7. A.R. Jacobson, R.W. Moses. Phys. Rev. Lett. 52 2041 (1984).

8. D. Brotherton-Ratcliffe, I.H.Hutchinson, Culham Laboratory Report

CLM-R246 (1984).

9. I.H. Hutchinson, M. Malacarne, P. Noonan, D. Brotherton-Ratcliffe,

Nuclear Fusion 24 59 (1984).

-II-



0.0
-0.5
-0.5 t ime

0 100 200 300 400 500

6 0

2

0 t ime
0

0 100 200 300 400 500
Fig.1 F and e vs. time. Dashed lines show evolution under 1D resistive

diffusion. (Case: S 10
3, 

i= flat).

1.0 F

0.8 + S=10 3 n=fta

0.4
5=10 4  +0.°6 rshpd+

0.2

0.0 - - - - - - - - - - - - - - - - -

-0.2

-0.4

0 1 2 3

Fig.2 F vs. 6 in the steady state. Bars show fluctuation amplitudes.

(Cases: S - 10 3 ,  
flat and S - 104 , in - shaped).

IL LH.. mm mmmm•mmm mmm mm



0.20 SBe/Be

0.16 ff1

0.12

0.08 f 4

0.04

0.00 " E (10- )

0 1 2 3
Fig.3 68,e/ vs. Ez in the steady state. Bars show fluctuation

amplitudes 
(case: S - I0

3, 
? - flat).

1.0 F (10-3) / I2

0.8 f

0.6 i

0.4 soLid resistace
---- -- - - - - - - - - - - - - - - - - -

0.2

0.0 , (
0 1 2 3

Fig.4 Z /I vs. E. in the steady state. ars show fluctuation

amplitudes.

(Case: S - 10 3
, vr = flat).



4 j /B (p)

* ,,0HBTX expt. resut:

3

2

I - simuttion at t 320

0

0.0 0.2 0.4 0.6 0.8 1.0
Fig.5 J1 /B vs. radius and heuristic comparison with experi~ment.

(Case: S 10 in~ - flat).

1.2 j=Jp i=v aB r 2=vB 3=(vxB)a

0. 8

'-S ~red I us

0.0 0.2 0.4 0.6 0.8 1.0
Fiq.6 j0and (S/li) ( v x 3) ) terms vs. radius.

(Case: S _ 103, v flat).



0 4o~ (fB.2  r di-)

1, -2

-2

-3

-4

t0 100 200 300 400 500
Fig.? Energy spectrum of B rvs. time.

(Case: 5 103 r flat).

I(f B,2 r dr)

010

0 2m -8 -

Fig.8 Energy spectrum of B rat t - 500.

(Case: S _ 10
3, in - flat).



DATE

-FILMED


